This illustration provided by the National Ignition Facility at the Lawrence Livermore National Laboratory depicts a target pellet inside a hohlraum capsule with laser beams entering through openings on either end. The beams compress and heat the target t
American scientists have announced another step toward producing energy from nuclear fusion.
U.S. government researchers said they were able to cause a fusion reaction that sustained itself and produced energy for a very short period. The scientists said this was an important step because it is very difficult to get fusion to become self-sustaining. Fusion requires extremely high temperatures and pressures, and the process can easily stop.
Fusion happens when the nuclei of two atoms are subjected to extreme heat. This leads to the formation of a new, larger atom and the release of energy. Fusion is the process that fuels stars, including the sun. Some experts have suggested that someday, fusion energy could be used to provide limitless, pollution-free power.
One barrier to that goal is the fact that the fusion process itself needs a lot of energy. Scientists have not yet performed a fusion reaction that releases more energy than it requires.
Government scientists with the National Ignition Facility at the Lawrence Livermore National Laboratory in California carried out the experiments. The lab is part of the U.S. Department of Energy.
The experiments took place in November 2020 and February 2021. Research results recently appeared in a study in the publication Nature Physics.
The state reached in the experiments is called burning plasma. Plasma is one of the four main states of matter. It contains charged particles including ions and electrons. The Department of Energy explains that burning plasma “is one in which most of the plasma heating” comes from fusion reactions.
Alex Zylstra is an experimental physicist at Lawrence Livermore National Laboratory. He helped lead the research. Zylstra told Reuters that the process is similar to trying to start a fire.
"If you want to make a campfire, you want to get the fire hot enough that the wood can keep itself burning," he said. "This is a good analogy for a burning plasma, where the fusion is now starting to become self-sustaining."
The experiments involved aiming 192 lasers at a small capsule held inside a gold metal container. The researchers reported the process heats the capsule to about 100 million degrees Celsius. This creates about 50 percent more pressure inside the capsule than what is inside the center of the sun.
The experiments created burning plasmas that lasted just one trillionth of a second. But Zylstra said that was enough to be considered a success. He said fusion had produced about 10 times as much energy as went into heating the fuel. But it produced less than 10 percent of the total amount of laser energy because the process remains inefficient, Zylstra added.
The amount of energy produced was far more than in past experiments, the researchers said. But it was still small, about the same amount that is contained in nine-volt batteries.
Earlier experiments in the U.S. and Britain succeeded in fusing atoms, but produced no self-heating, Steven Cowley told The Associated Press. He directs the Princeton Plasma Physics Laboratory in New Jersey but did not take part in the study.
Zylstra said making fusion remains a huge and "complex technological challenge.” It will require serious investments and many years of study before it can be considered a realistic form of energy production, he added.
Words in This Story
reaction – n. a change that happens when two substances are put together
sustain – v. to cause or permit something to continue for a period of time
nuclei (pl.) (nucleus) –n. (physics) the central part of an atom which contains protons and neutrons
analogy – n. a comparison that shows how two things are similar
capsule – n. a small container
inefficient – adj. not achieving maximum productivity
battery – n. a device that provides and stores electricity for things
challenge – n. a difficult task or problem; something that is hard to do
次世代技術「核融合」、欧米と日本の違い
www.nikkei.com
米グーグルのほか、米アマゾン・ドット・コム創業者のジェフ・ベゾス氏、米マイクロソフト創業者のビル・ゲイツ氏が出資するのが、次世代原発の1つの形態である核融合炉開発だ。従来型の原発に比べて安全性は非常に高く、廃棄物も出ないが、日本ではこの技術を手掛けるベンチャー企業の境遇は厳しい。欧米と違って投資家の動きが鈍いからだ。
背景にあるのが、重厚長大産業のベンチャーが育ちづらい日本の土壌だ。米国では電気自動車(EV)メーカーのテスラを筆頭に重厚長大産業で新しい会社が生まれているが、日本市場に目を向けると主要プレーヤーの顔ぶれはここ数十年代わり映えがしない。
「海外ではビジネスの種と捉えられても、日本ではリスクとしかみられない」と京都フュージョニアリングの長尾昂CEOは嘆く。実用化は「50年以降」(小西氏)とみられている核融合炉。たしかに設立数年で大きな売り上げ、利益を上げるのは難しい。それが、米国では助走期間と解釈してもらえるのに対し、日本では「なかなか収益を上げられない会社」と見られてしまう。
民間の動きが鈍い日本
これと似た現象が先行して起きているのが宇宙産業だ。米国の宇宙産業は当初、国が主導して進められていたが、近年では専門のベンチャー企業が生まれ、情報技術(IT)関連企業との連携も進み、民間主導へ移行した。一方、日本では宇宙航空研究開発機構(JAXA)を中心とする国主導の形態は変わらず、米スペースXのような中核企業は育っていない。日本の宇宙産業の市場規模は数千億円。米国と比べると2ケタ違う。民間の動きは鈍い。
エネルギーの分野は日々革新が進む。ただでさえハードルが高い2050年のカーボンニュートラル(炭素中立)を実現するには、イノベーションや大規模な資金は欠かせない。日本の産業界、投資家が及び腰のままでは、世界競争の中での成功はおぼつかない。
「脱炭素」に関して、日本の政府が企業の研究開発を支援するために創設した基金は、今後10年間で2兆円だ。4年間で2兆ドル(約216兆円)を投じる米国や、約30年間で水素戦略だけで4700億ユーロ(約60兆円)を投じる欧州連合(EU)に、大きく水をあけられている。
もっとも、国が巨額を投じるだけではイノベーションは生まれない。国が新たな市場の立ち上がりを支援しながら、米国のように民間企業に資金が回るような土壌づくりが不可欠だ。